株式会社国際技術開発センター

東京都千代田区内神田1 - 15 - 6藤井第二ビル TEL03 - 3294 - 8061(代)

FAX03 - 3294 - 8063

ニュースガイト'No. 10528

< 日本特許・実用新案明細書収録セット>

ホームページ公開中! http://www.itdc-patent.com

*最新の特許情報が満載!

燃料電池のリサイクル方法

[公開編]平成12年~平成21年(10年間) 100点

(本体価格) (税込価格)

全文PDF CD-ROM版(抄録版付) ¥31,500-¥30,000-B5製本版 ¥31,500-¥30,000 -全文紙収録 CD-ROM版·B5製本版 一括購入 ¥47,250-¥45,000-

<u>既刊関連セットのご案内</u> (本体価格						
No,10515	公開特許	リチウムの回収方法と工程	平.12 - 21 100点	点 ¥30,000		
No,10331	"	インジウムの回収方法と工程	平.16-平.20 89点	¥ 28,700		
No,10332	<i>''</i>	コバルトの回収方法と工程	平.16-平.20 84点	¥ 28,500		
No,10089	<i>''</i>	希土類金属の回収方法と工程	平.13-平.18 74点	¥ 25,600		
No,10073	<i>''</i>	廃プリント基板からの有価約回収方法	平.15-平.18 81点	¥ 24,900		
No,10062	<i>''</i>	マグネシウム合金の回収方法	平.15-平.18 77点	¥ 23,700		
No,10410	"	パラジウムの回収方法と工程	平.11-平.20 90点	¥ 29,000		
No,10384	"	廃棄物より亜鉛の回収方法	平.12-平.20 100点	点 ¥ 28,600		
No,10383	"	エッチング廃液より有効金属の回収法	平.10-平.20 100点	点 ¥ 28,600		
No,10334	"	チタンの回収方法と工程	平.15-平.20 75点	¥ 26,600		
No,10343	<i>''</i>	ディスプレイパネルの再利用方法	平.16-平.20 75点	¥ 30,000		
No,10091	<i>''</i>	写真廃液からの有価物回収方法	平.9-平.18 81点	¥ 26,700		
No,10063	"	スクラップより銅の回収方法	平.14-平.18 74点	¥ 23,700		
No,10381B	<i>''</i>	アルミスクラップの再生方法と工程	平.15-平.20 82点	¥ 24,200		
No,10381A	<i>''</i>	II .	平.10-平.14 86点	¥ 25,800		
No,10385	"	金属の捕集方法と工程	平.14-平.20 94点	¥ 28,600		
No,10344	特許登録	廃電池より有効金属の回収方法	平.13-平.20 77点	¥ 28,000		
No,9141	公告特許	II .	昭.61-平.12 60点	¥ 23,100		
No,10430	公開特許	貴金属の回収方法と工程	平.21 74点	¥ 25,000		

^{*}お申し込み方法・・・下記にご記入の上、EメールまたはFAX・郵便にてお送りください。

[CD-ROM版はPDFファイルにしおりリンク機 (メール宛先: kokusai@itdc-patent.com

お電話でも承ります) 2~3日中に請求書同封の上お送り致します。]

お申込書

会社名	ご注文内容		
	ニュースガイドNo.	CD-ROM版 or B5製本版 or 一括購入	
所属部署名	<u>題名</u>		
		合計 ¥	
担当者名	E-mail:		
	TEL:	FAX:	
<u>住所∶</u> 〒			

燃料電池のリサイクル方法 No.10528

[公開編] 平成12年~平成21年(10年間) 100点

¥31,500 CD-ROM版

30 より回収された触媒、基材の回収方法 松下電器産業株式会社

及び当該回収方法・・・

B5製本版 ¥31,500

(全て税込価格)

以下41点省略

(CD-ROM版·B5製本版 一括購入 ¥ 47.250)

	(CE	D-ROM版·B5製本版	— 	古購入	¥ 47,250)	
1	メタル基体触媒からの白金族元素の回 収法	同和鉱業株式会社	31	燃料電池およて	ぶその分解方法	松下電器産業株式会社
2	燃料電池システム及びフィルタ部材を 再生するための方法	マンネスマン アクチェンゲ ゼルシャフト	32	高温ポリマ電解 の再生方法	質膜燃料電池の触媒	シーメンス アクチエンゲゼ ルシヤフト
3	一体化再生型固体高分子型燃料電池 の酸素極用触媒	工業技術院長	33	水溶液中のルラ	テニウムの分離方法	住友金属鉱山株式会社
4	ルテニウムの精製法	キレスト株式会社	34		營·再生方法及び該方 身生された燃料電池及 ⟨テム	トヨタ自動車株式会社
5	燃料電池運転システムにおける水素貯 蔵合金再生装置	本田技研工業株式会社	35	水素吸蔵合金棒	構成元素の回収方法	三井金属鉱業株式会社
6	固体高分子型燃料電池の再生方法	富士電機株式会社	36	燃料電池、その パレータ	分解方法およびそのセ	トヨタ自動車株式会社
7	金超微粒子担持触媒の再生方法	経済産業省産業技術総合 研究所長	37	燃料電池の分解 法	解装置及びその分解方	トヨタ自動車株式会社
	固体高分子型燃料電池用熱硬化型液 状シール剤、前記シール剤によりシールが形成された単セルおよびその・・・	本田技研工業株式会社	38	燃料電池解体刀	方法及び燃料電池	トヨタ自動車株式会社
9	固体高分子型燃料電池の電解質膜 - 電極集成体	本田技研工業株式会社	39	燃料電池分解力	方法及び燃料電池	トヨタ自動車株式会社
10	白金 - コバルト合金触媒の製造方法	石福金属興業株式会社	40	燃料電池解体力	方法	トヨタ自動車株式会社
11	水素吸蔵合金の回復方法及び水素燃料タンク	ティーディーケイ株式会社	41	触媒回収方法		トヨタ自動車株式会社
12	水素吸蔵合金の再生方法	トヨタ自動車株式会社		塩酸酸性溶液 <i>抗</i> 方法	からのルテニウムの回収	田中貴金属工業株式会社
13	燃料電池およびその分解方法	日産自動車株式会社	43	燃料電池解体力	方法	トヨタ自動車株式会社
14	炭化鉄の利用方法及び装置	川崎重工業株式会社			方法、貴金属溶解用処属溶解溶液の製造方法	伊勢化学工業株式会社
15	水素吸蔵合金のリサイクル方法	株式会社東芝	45	の再生方法およえた電気化学等	を備えた電気化学装置 はび固体電解質膜を備 表置	トヨタ自動車株式会社
16	ルテニウムメタルの回収方法	同和鉱業株式会社	46	含フッ素ポリマ- 利用装置	一の再利用方法及び再	トヨタ自動車株式会社
17	水素吸蔵合金の製造方法	株式会社日本製鋼所	47	固体電解質膜の 体高分子電解質	D再生方法、および固 質型燃料電池システム	トヨタ自動車株式会社
18	高純度ルテニウムのリサイクル方法及 びリサイクルされた高純度ルテニウムか らのターゲットの製造方法	株式会社日鉱マテリアルズ	48	燃料電池用電板 燃料電池用M E	亟、およびこれを用いた E A	日産自動車株式会社
19	水素透過膜用合金の製造方法	石福金属興業株式会社	49	燃料電池の再生	生制御方法	株式会社エクォス・リサーチ
	使用済核燃料中の希少元素FPの分離回収方法およびこれを利用した原子力発電 - 燃料電池発電共生システム	核燃料サイクル開発機構	50	燃料電池の再生	上制御装置	株式会社エクォス・リサーチ
21	金属バナジウムの製造方法および水 素吸蔵合金の製造方法	大同特殊鋼株式会社	51	触媒回収方法と	∠触媒回収装置	トヨタ自動車株式会社
22	ルテニウムの精製方法	住友金属鉱山株式会社		水素分離膜の		三菱重工業株式会社
	改質触媒の再生方法	ジョンソン、マッセイ、パブ リック、リミテッド、カンパニー			亟を構成する触媒層か {する方法	トヨタ自動車株式会社
24	ルテニウム及び / 又はイリジウムの回 収方法	田中貴金属工業株式会社	54	燃料電池用固体 よび、これを用し	本高分子電解質膜、お ハた燃料電池	日産自動車株式会社
25	燃料電池及び燃料電池の再生装置	株式会社日立モバイル	55	触媒再生方法、 燃料電池システ	水素生成装置および ⁻ ム	トヨタ自動車株式会社
26	白金族元素の分離回収方法の場合にあることは	住友金属鉱山株式会社	56	燃料電池		トヨタ自動車株式会社
	燃料電池から触媒金属及びスルホン 酸基を有する含フッ素ポリマーを回収 する方法	ト∃タ自動車株式会社 	57	使用済の担持さ	された金属触媒の再生	ハイドロカーボン テクノロ ジーズ インコーポレイテッ ド
	廃棄物からの貴金属回収方法および 装置	トヨタ自動車株式会社	58	燃料電池及び燃	然料電池分解方法	トヨタ自動車株式会社
29	燃料電池システムの改質触媒再生方 法	株式会社コロナ	59	燃料電池システ	-	トヨタ自動車株式会社
30	触媒の回収方法及び当該回収方法により回収方法を対し、基本の回収方法	松下雪哭在娄井子会社				